Rating Systems for Gameplayers, and Learning

نویسنده

  • Warren D. Smith
چکیده

| This report studies rating systems: systems that produce quantitative measures, called \rat-ings," of the ability of players in a league, based on game results. By \quantitative", it is meant that win odds for a game between two players in the league may be estimated from their ratings. We consider both`static' and`dynamic' systems. The latter update the ratings after each game. Attention is given to noise in rating systems and to the distribution of ratings in the player population. Some real-world data is also included. This subject may be of interest

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Recommender System Based on Variance Item Rating

K-nearest neighbors (KNN) based recommender systems (KRS) are among the most successful recent available recommender systems. These methods involve in predicting the rating of an item based on the mean of ratings given to similar items, with the similarity defined by considering the mean rating given to each item as its feature. This paper presents a KRS developed by combining the following app...

متن کامل

Using Dynamic Thermal Rating and Energy Storage Systems Technologies Simultaneously for Optimal Integration and Utilization of Renewable Energy Sources

Nowadays, optimal integration and utilization of renewable energy sources (RES) are of the most challenging issues in power systems. The wind and solar generation units' maximum production may or may not occur at peak consumption times resulting in non-optimal utilization of these resources. As a solution to this problem, energy storage systems (ESS) are embedded in networks. However, the power...

متن کامل

Effect of Rating Time for Cold Start Problem in Collaborative Filtering

Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

Fast and Slow Learning From Reviews∗

This paper develops a model of Bayesian learning from online reviews, and investigates the conditions for asymptotic learning of the quality of a product and the speed of learning under different rating systems. A rating system provides information about reviews left by previous customers. A sequence of potential customers decide whether to join the platform. After joining and observing the rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994